Newfangled Topical Film-Forming Solution for Facilitated Antifungal Therapy: Design, Development, Characterization, and In Vitro Evaluation

Author:

Dhimmar Bhakti1,Pokale Rahul1ORCID,Rahamathulla Mohamed2ORCID,Hani Umme2ORCID,Alshahrani Mohammad Y.3ORCID,Alshehri Sultan4,Shakeel Faiyaz5ORCID,Alam Prawez6ORCID,Osmani Riyaz Ali M.1ORCID,Patil Amit B.1

Affiliation:

1. Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570 015, Karnataka, India

2. Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia

3. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Guraiger, Abha 61421, Saudi Arabia

4. Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia

5. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

6. Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

Luliconazole is a broad-spectrum topical antifungal agent that acts by altering the synthesis of fungi cell membranes. Literature suggests that the recurrence of fungal infection can be avoided by altering the pH of the site of infection. Studies have also suggested that fungi thrive by altering skin pH to be slightly acidic, i.e., pH 3–5. The current study is aimed to design, develop, characterize, and evaluate an alkaline pH-based antifungal spray solution for antifungal effects. Luliconazole was used as an antifungal agent and an alkaline spray was formulated for topical application by using Eudragit RS 100, propylene glycol (PG), water, sodium bicarbonate, and ethanol via solubilization method. Herein, sodium bicarbonate was used as an alkalizing agent. Based on DSC, FTIR, PXRD, scanning electron microscopy (SEM), and rheological analysis outcomes, the drug (luliconazole) and polymer were found to be compatible. F-14 formulation containing 22% Eudragit RS 100 (ERS), 1.5% PG, and 0.25% sodium bicarbonate was optimized by adopting the quality by design approach by using design of experiment software. The viscosity, pH, drying time, volume of solution post spraying, and spray angle were, 14.99 ± 0.21 cp, 8 pH, 60 s, 0.25 mL ± 0.05 mL, and 80 ± 2, respectively. In vitro drug diffusion studies and in vitro antifungal trials against Candida albicans revealed 98.0 ± 0.2% drug diffusion with a zone of inhibition of 9 ± 0.12 mm. The findings of the optimized luliconazole topical film-forming solution were satisfactory, it was compatible with human skin, and depicted sustained drug release that suggests promising applicability in facilitated topical antifungal treatments.

Funder

Deanship of Scientific Research at King Khalid University, Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3