Elastic Modulus of a Carbonized Layer on Polyurethane Treated by Ion-Plasma

Author:

Chudinov Vyacheslav S.12ORCID,Shardakov Igor N.13,Ivanov Yaroslav N.2,Morozov Ilya A.12ORCID,Belyaev Anton Y.1

Affiliation:

1. Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Science, Academician Korolev Street 1, 614013 Perm, Russia

2. Faculty of Mechanics and Mathematics, Perm State University, Bukireva Street 15, 614990 Perm, Russia

3. Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Komsomolsky Prospect 29, 614990 Perm, Russia

Abstract

Nanocoatings formed by various plasma and chemical methods on the surface of polymeric materials have unique properties. However, the applicability of polymeric materials with nanocoatings under specific temperature and mechanical conditions depends on the physical and mechanical properties of the coating. The determination of Young’s modulus is a task of paramount importance since it is widely used in calculations of the stress–strain state of structural elements and structures in general. Small thicknesses of nanocoatings limit the choice of methods for determining the modulus of elasticity. In this paper, we propose a method for determining the Young’s modulus for a carbonized layer formed on a polyurethane substrate. For its implementation, the results of uniaxial tensile tests were used. This approach made it possible to obtain patterns of change in the Young’s modulus of the carbonized layer depending on the intensity of ion-plasma treatment. These regularities were compared with regularities of changes in the molecular structure of the surface layer caused by plasma treatment of different intensity. The comparison was made on the basis of correlation analysis. Changes in the molecular structure of the coating were determined from the results of infrared Fourier spectroscopy (FTIR) and spectral ellipsometry.

Funder

Russian Foundation for Basic Research

Russian Mega-grants program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3