Effect of Impact Angle on the Impact Mechanical Properties of Bionic Foamed Silicone Rubber Sandwich Structure

Author:

Zhang Di1,Dong Hui1,Zhao Shouji1,Yan Wu1,Wang Zhenqing1

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

In this paper, a red-eared slider turtle is used as the prototype for the bionic design of the foamed silicone rubber sandwich structure. The effect of impact angle on the performance of the foamed silicone rubber sandwich structure against low-velocity impact is studied by the finite element method. The numerical model uses the intrinsic structure model of foamed silicone rubber with porosity and the three-dimensional Hashin fiberboard damage model. The validity of the model was verified after experimental comparison. Based on the finite element simulation of different impact angles and velocities, the relationship between impact velocity and residual velocity, as well as the penetration threshold at various impact angles are obtained, and the change law of impact resistance of foamed silicone rubber sandwich structure with impact angle and velocity, as well as the damage pattern of sandwich structure at different impact angles and velocities are given. The results can provide a basis for the impact resistance design of the bionic foamed silicone rubber sandwich structure. The results show that, at a certain impact speed, the smaller the impact angle, the longer the path of the falling hammer along the plane of the sandwich structure, the lighter the damage to the sandwich structure and the greater the absorbed energy, so that avoiding the impact from the frontal side of the sandwich structure can effectively reduce the damage of the sandwich structure. When the impact angle is greater than 75°, the difference in impact resistance performance is only 2.9% compared with 90°, and the impact angle has less influence on the impact resistance performance at this time.

Funder

the National Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3