Simulation of Wood Polymer Composites with Finite Element Analysis

Author:

Nukala Satya Guha1ORCID,Kong Ing1ORCID,Kakarla Akesh Babu1ORCID,Patel Vipulkumar Ishvarbhai1,Abuel-Naga Hossam2

Affiliation:

1. Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia

2. Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC 3086, Australia

Abstract

Wood is a cellulosic material that is most abundantly available in nature. Wood has been extensively used as reinforcement in polymer composite materials. Wood polymer composite (WPC) is an environmentally friendly and sustainable material exploited in building and construction within the marine, packaging, housewares, aerospace, and automotive industries. However, the precision of testing equipment for finding the properties of WPCs becomes less feasible compared to experimental analysis due to a high degree of differences in the measurement of properties such as stress, strain and deformation. Thus, evaluating the mechanical properties of WPCs using finite element analysis (FEA) can aid in overcoming the inadequacies in measuring physical properties prior to experimental analyses. Furthermore, the prediction of mechanical properties using simulation tools has evolved to analyze novel material performance under various conditions. The current study aimed to examine the mechanical properties of saw dust-reinforced recycled polypropylene (rPP) through experimentation and FEA. A model was developed using SolidWorks, and simulation was performed in ANSYS to predict the mechanical properties of the WPCs. To validate the obtained results, the simulated static tension test results were confirmed with experimental tension tests, and both assessments were well in accordance with each other. Using FEA to predict material properties could be a cost-effective technique in studying new materials under varied load conditions.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3