Hydrophobic, Mechanical, and Physical Properties of Polyurethane Nanocomposite: Synergistic Impact of Mg(OH)2 and SiO2

Author:

Rajabimashhadi Zahra1ORCID,Naghizadeh Rahim1ORCID,Zolriasatein Ashkan2ORCID,Bagheri Sonia3ORCID,Mele Claudio3ORCID,Esposito Corcione Carola3ORCID

Affiliation:

1. School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

2. Non-Metallic Materials Research Department, Niroo Research Institute, Tehran 1466-5517, Iran

3. Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy

Abstract

Polyurethane (PU) is one of the most well-known polymer coatings because of its favorable characteristics, which include its low density, nontoxicity, nonflammability, longevity, adhesion, simple manufacture, flexibility, and hardness. However, PU does come with several major drawbacks, among which are poor mechanical properties as well as low thermal and chemical stability, particularly in the high-temperature mode, where becomes gets flammable and loses adhesion ability. The limitations have inspired researchers to develop a PU composite to improve the weaknesses by adding different reinforcements. Magnesium hydroxide, having the ability to be produced with exceptional properties such as flammability, has consistently attracted the interest of researchers. Additionally, silica nanoparticles with high strength and hardness are one of the excellent reinforcements of polymers these days. The hydrophobic, physical, and mechanical properties of pure polyurethane and the composite type (nano, micro, and hybrid) fabricated with the drop casting method were examined in this study. 3-Aminopropyl triethoxysilane was applied as a functionalized agent. To confirm that hydrophilic particles turned into hydrophobic, FTIR analysis was carried out. The impact of size, percentage, and kind of fillers on different properties of PU/Mg(OH)2-SiO2 was then investigated using different analyses including spectroscopy and mechanical and hydrophobicity tests. The resultant observations demonstrated that different surface topographies can be obtained from the presence of particles of different sizes and percentages on the hybrid composite’s surface. Surface roughness allowed for exceptionally high water contact angles, which confirmed the hybrid polymer coatings’ superhydrophobic properties. According to the particle size and content, the distribution of fillers in the matrix also improved the mechanical properties.

Funder

Iran University of Science and Technology

Niroo Research Institute

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3