New Hybrid Adsorbents Based on Polyaniline and Polypyrrole with Silicon Dioxide: Synthesis, Characterization, Kinetics, Equilibrium, and Thermodynamic Studies for the Removal of 2,4-Dichlorophenol

Author:

Bekhoukh Amina1,Kiari Mohamed2ORCID,Moulefera Imane3ORCID,Sabantina Lilia4ORCID,Benyoucef Abdelghani5ORCID

Affiliation:

1. Department of Process Engineering, Faculty of Science and Technology, University of Mustapha Stambouli Mascara, Mascara 29000, Algeria

2. Department of Chemical and Physical Sciences, Materials Institute, University of Alicante (UA), 03080 Alicante, Spain

3. Chemical Engineering Departement, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 300071 Murcia, Spain

4. Berlin School of Culture + Design, Berlin University of Applied Sciences-HTW Berlin, 12459 Berlin, Germany

5. LSTE Laboratory, University of Mustapha Stambouli, Mascara 29000, Algeria

Abstract

In the current study, polyaniline and polypyrrole with silicon dioxide (PAni:PPy@SiO2) were combined to formulate a new adsorbent, which was examined using XRD, TEM, SEM, FTIR, TGA, and BET, and the adsorption kinetics were investigated by UV–vis spectroscopy. The optical band gap was also evaluated. The electrochemical behavior was investigated using cyclic voltammograms. Moreover, experimental conditions were used to evaluate the 2,4-dichlorophenol (2,4-DCP) adsorption based on the pH, temperature, reaction time, and initial concentration. The analytical isotherm data were determined by Langmuir, Freundlich, Temkin, Sips, and Redlich–Peterson models. For the analysis of the kinetic data, the pseudo-first- and -second-order models and the intraparticle diffusion model were investigated. It was found that this new adsorbent possessed the highest adsorption efficiency after several regeneration cycles. Furthermore, the thermodynamic parameters of adsorption, such as entropy (ΔS), enthalpy (ΔH), and standard Gibbs were measured. These results suggest that the PAni:PPy backbone can generally be better applied for the elimination of 2,4-dichlorophenol by appropriately dispersing it over the surface of suitable SiO2. This search provides a novel way to develop separable, high-performance adsorbents for adsorbing organic contamination from wastewater.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3