Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye

Author:

Matei Dănuţa1,Katsina Abubakar Usman12ORCID,Mihai Sonia1,Cursaru Diana Luciana1,Şomoghi Raluca13ORCID,Nistor Cristina Lavinia3ORCID

Affiliation:

1. Faculty of Petroleum Technology and Petrochemistry, Petroleum—Gas University of Ploiesti, 100680 Ploiești, Romania

2. Department of Pure and Industrial Chemistry, Bayero University, Kano PMB 3011, Nigeria

3. National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania

Abstract

Synthetic organic pigments like xanthene and azo dyes from the direct discharge of textile effluents are considered colossal global issues and attract the concern of scholars. Photocatalysis continues to be a very valuable pollution control method for industrial wastewater. Incorporations of metal oxide catalysts such as zinc oxide (ZnO) on mesoporous Santa Barbara Armophous-15 (SBA-15) support to improve catalyst thermo-mechanical stability have been comprehensively reported. However, charge separation efficiency and light absorption of ZnO/SBA-15 continue to be limiting its photocatalytic activity. Herein, we report a successful preparation of Ruthenium-induced ZnO/SBA-15 composite via conventional incipient wetness impregnation technique with the aim of boosting the photocatalytic activity of the incorporated ZnO. Physicochemical properties of the SBA-15 support, ZnO/SBA-15, and Ru-ZnO/SBA-15 composites were characterized by X-ray diffraction (XRD), N2 physisorption isotherms at 77 K, Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and transmission electron microscopy (TEM). The characterization outcomes exhibited that ZnO and ruthenium species have been successfully embedded into SBA-15 support, andtheSBA-15 support maintains its structured hexagonal mesoscopic ordering in both ZnO/SBA-15 and Ru-ZnO/SBA-15 composites. The photocatalytic activity of the composite was assessed through photo-assisted mineralization of aqueous MB solution, and the process was optimized for initial dye concentration and catalyst dosage. 50 mg catalyst exhibited significant degradation efficiency of 97.96% after 120 min, surpassing the efficiencies of 77% and 81% displayed by 10 and 30 mg of the as-synthesized catalyst. The photodegradation rate was found to decrease with an increase in the initial dye concentration. The superior photocatalytic activity of Ru-ZnO/SBA-15 over the binary ZnO/SBA-15 may be attributed to the slower recombination rate of photogenerated charges on the ZnO surface with the addition of ruthenium.

Funder

Ministry of Research, Innovation, and Digitization

CCCDI—UEFISCDI

Nucleu Programme

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3