Bioactive Materials Based on Hydroxypropyl Methylcellulose and Silver Nanoparticles: Structural-Morphological Characterization and Antimicrobial Testing

Author:

Filimon Anca1ORCID,Onofrei Mihaela Dorina1ORCID,Bargan Alexandra2ORCID,Stoica Iuliana3ORCID,Dunca Simona4ORCID

Affiliation:

1. Polycondensation and Thermostable Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania

2. Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania

3. Atomic Force Microscopy Laboratory, Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania

4. Department of Microbiology, Biology Faculty, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I Bvd., 700506 Iasi, Romania

Abstract

The progress achieved in recent years in the biomedical field justifies the objective evaluation of new techniques and materials obtained by using silver in different forms as metallic silver, silver salts, and nanoparticles. Thus, the antibacterial, antiviral, antifungal, antioxidant, and anti-inflammatory activity of silver nanoparticles (AgNPs) confers to newly obtained materials characteristics that make them ideal candidates in a wide spectrum of applications. In the present study, the use of hydroxypropyl methyl cellulose (HPMC) in the new formulation, by embedding AgNPs with antibacterial activity, using poly(N-vinylpyrrolidone) (PVP) as a stabilizing agent was investigated. AgNPs were incorporated in HPMC solutions, by thermal reduction of silver ions to silver nanoparticles, using PVP as a stabilizer; a technique that ensures the efficiency and selectivity of the obtained materials. The rheological properties, morphology, in vitro antimicrobial activity, and stability/catching of Ag nanoparticles in resulting HPMC/PVP-AgNPs materials were evaluated. The obtained rheological parameters highlight the multifunctional roles of PVP, focusing on the stabilizing effect of new formulations but also the optimization of some properties of the studied materials. The silver amount was quantified using the spectroscopy techniques (energy-dispersive X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX)), while formation of the AgNPs was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Also, the morphological examination (Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM)) by means of the texture roughness parameters has evidenced favorable characteristics for targeted applications. Antibacterial activity was tested against Escherichia coli and Staphylococcus aureus and was found to be substantially improved was silver was added in the studied systems.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3