Effect of Basalt Fiber Content and Length on the Strength and Crack Development of Polyvinyl Alcohol/Basalt Hybrid Fiber-Reinforced Cement Soil

Author:

Shu Yonghua12ORCID,Zhang Jingshuang12ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

2. Engineering Research Center of Underground Mine Construction, Ministry of Education, Huainan 232001, China

Abstract

Polyvinyl alcohol (PVA) fiber is widely used in geotechnical engineering because of its excellent physical and mechanical properties; however, PVA fibers are prone to aging, while basalt fiber has a natural anti-aging ability, which can be added to cement material to effectively eliminate the effects of aging on PVA fiber. Previous experiments identified that the optimum content of PVA fiber is 0.5% (mass fraction, the same below). Based on this, we continued to add basalt fibers of different lengths (3 mm, 6 mm, 9 mm, 12 mm, 18 mm, 30 mm) and different contents (0%, 0.25%, 0.5%, 0.75%, 1%) to study the effect of both length and content of basalt fibers on the strength of cement soil specimens. It was concluded that adding 0.5 % of 9 mm basalt fiber results in the greatest increase in unconfined compressive strength (UCS). The UCS reached 12.59 MPa, which was 71% higher than specimens without fiber, and a regression analysis was carried out to obtain the relationship among them. The ratio of cement soil in the highest UCS and the relationship among the UCS, the length, and the content of basalt fiber can be used as a reference for practical projects. In addition, digital image correlation (DIC) technology was used to analyze the surface cracks and horizontal strain field when the peak strain was reached at each content and length of the basalt fiber. Finally, the curing mechanism for hybrid fiber cement soil was analyzed by combining the results of the UCS test, DIC test, and SEM test.

Funder

Graduate Innovation Fund of Anhui University of Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3