Thermal Decomposition and Stability of Hybrid Graphene–Clay/Polyimide Nanocomposites

Author:

Akinyi CarolineORCID,Iroh Jude O.ORCID

Abstract

Polyimide matrix nanocomposites have gained more attention in recent years due to their high thermal stability, good interfacial bonding, light weight, and good wear resistance and corrosion, factors that make them find great applications in the field of aerospace and advanced equipment. Many advancements have been made in improving the thermal, mechanical, and wear properties of polyimide nanocomposites. The use of nanofillers such as carbon nanotubes, graphene, graphene oxide, clay, and alumina has been studied. Some challenges with nanofillers are dispersion in the polymer matrix and interfacial adhesion; this has led to surface modification of the fillers. In this study, the interaction between clay and graphene to enhance the thermal and thermal-oxidative stability of a nanocomposite was studied. A polyimide/graphene nanocomposite containing ~12.48 vol.% graphene was used as the base nanocomposite, into which varying amounts of clay were added (0.45–9 vol.% clay). Thermogravimetric studies of the nitrogen and air atmospheres showed an improvement in thermal decomposition temperature by up to 50 °C. The presence of both fillers leads to increased restriction in the mobility of polymer chains, and thus assists in char formation. It was observed that the presence of clay led to higher decomposition temperatures of the char formed in air atmosphere (up to 80 °C higher). This led to the conclusion that clay interacts with graphene in a synergistic manner, hence improving the overall stability of the polyimide/graphene/clay nanocomposites.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference50 articles.

1. Graphene Polyimide Nanocomposites; Thermal, Mechanical, and High-Temperature Shape Memory Effects;Yoonessi;ACS Nano,2012

2. A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: Challenges and recommendations for future improvement;Ogbonna;J. Thermoplast. Compos. Mater.,2021

3. Recent advances in polyimide composites;Doug;High Perform. Polym.,1993

4. Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes;Giannelis;Polym. Confin. Environ. Adv. Polym. Sci.,1999

5. New polylactide/layered silicate nanocomposite: A novel biodegradable material;Yamada;Nano Lett.,2002

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3