Study and Microanalysis on the Effect of the Addition of Polypropylene Fibres on the Bending Strength and Carbonization Resistance of Manufactured Sand Concrete

Author:

Tan Yan1,Ma Chong1,Zhao Ben1,Xiong Wei2,Chen Xingxiang1,Yu Jiangtao3

Affiliation:

1. College of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

2. Department of Architecture and Engineering, Wuhan City Polytechnic, Wuhan 430064, China

3. School of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

To popularize the complete replacement of natural sand with manufactured sand, a study was performed to determine the effect of adding polypropylene fibres (PPFs) to increase the bending strength and carbonization resistance of manufactured sand concrete (MSC). A 2 × 3 factorial design with the content and length of PPF as variables was used to establish a carbonization depth prediction model and a response surface model (RSM). The phase composition and microstructure of polypropylene-fibre-reinforced manufactured sand concrete (PPF-MSC) were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show the addition of PPF with different contents and lengths increases the bending strength of PPF-MSC to varying degrees, while reducing the carbonization depth and increasing the dynamic elastic modulus after 28 days of carbonization. The highest bending strength (6.12 MPa) and carbonization resistance of PPF-MSC are obtained by the addition of 1 kg/m3 of 12 mm PPF, while the carbonization depth and an increase in the dynamic elastic modulus after 28 days of carbonization are maintained at a minimum of 2.26% and 1.94 mm, respectively. A prediction model was established to obtain a formula for the PPF-MSC carbonization depth in terms of the content and length of PPF and the carbonization time. The following results were obtained from the RSM: compared to the PPF length, the PPF content has a larger impact on the PPF-MSC bending strength and a smaller impact on the PPF-MSC carbonization resistance; there is no significant interaction between the content and length of PPF; and the predicted and measured values are close, indicating that the model is highly reliable. A comparison of the XRD patterns and SEM micrographs of PPF-MSC and MSC after 28 days of carbonization show a lower peak intensity of CaCO3 in the pattern for the carbonized area for PPF-MSC than for MSC and considerably fewer surface pores and cracks in PPF-MSC than in MSC. These results indicate that the addition of PPF increases the compactness of MSC and creates an effective resistance to the erosion by water molecules and carbon dioxide (CO2), thus enhancing the bending strength and carbonization resistance of MSC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3