A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste

Author:

Aragosa Amina12ORCID,Saccomanno Benedetta1ORCID,Specchia Valeria1ORCID,Frigione Mariaenrica3ORCID

Affiliation:

1. Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy

2. School of Science and Engineering, Al Akhawayn University, Ifrane 53000, Morocco

3. Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy

Abstract

Polyhydroxybutyrate (PHB) is a biodegradable bio-based polymer synthesized by microorganisms under unfavorable conditions from agro-industrial residues as a source of carbon. These aspects make the bio-based polymer attractive for the mass production of biodegradable plastics, and a definitive replacement for petroleum-based plastics. The aim of this work was to characterize the putative PHB-producing bacterium 1B isolated from the argan soil, to identify the polymer produced, and quantify the PHB production using argan seeds waste. DNA extraction, PCR, and Sanger sequencing were conducted for the molecular identification of strain 1B; the residual biomass and the PHB quantification were measured and compared in the presence of simple sugars and pretreated argan seeds waste. The 1B growth and PHB synthesis were optimized by selecting physical and nutritional parameters: temperature, incubation time, pH, NaCl concentration, and nitrogen sources concentrations. A preliminary characterization of the bio-based polymer extracted was conducted by UV-Visible spectrophotometry and FTIR analysis. The strain 1B was identified as belonging to the genus Sphingomonas. The PHB final yield was higher in a growth culture enriched with argan waste (3.06%) than with simple sugars. The selected conditions for the bacterial optimal growth incremented the PHB final yield to 6.13%, while the increase in the argan residue concentration from 1 to 3% in a larger culture volume led to the PHB final yield of 8.16%. UV-Visible spectrophotometry of the extracted sample reported a remarkable peak at 248 nm, as well as FTIR spectra analysis, showed peaks at 1728 and 1282 wavenumber/cm. Both preliminary characterizations demonstrated that the extracted sample is the bio-based polymer polyhydroxybutyrate. The results reported in this work reveal how the costless available argan seeds can be used for polyhydroxybutyrate production using a novel Sphingomonas species.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3