Immobilization Approach as a Creative Strategy to Remove Reactive Dye Red 195 and Cu2+ Ions from Wastewater Using Environmentally Benign Geopolymer Cement

Author:

Ahmed Doaa A.1,El-Apasery Morsy A.2ORCID,Ragai Shereen M.1

Affiliation:

1. Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt

2. Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt

Abstract

Water is a resource that is essential to almost all phases of industrial and manufacturing operations globally. It is important to handle the wastewater generated professionally. The textile industry is one of the major global polluters, with textile producers responsible for one-fifth of all industrial water pollution worldwide. In contrast, heavy metal contamination has developed into a critical, expanding global environmental problem. Geopolymer is a cementitious constituent of amorphous aluminosilicates derived from natural or industrial wastes. It is produced using the polymerization of aluminosilicate raw ingredients in an alkaline atmosphere. The aim of this study is to evaluate the application of eco-friendly geopolymer cement in the immobilization technique for the treatment of wastewater including heavy metals and dyes. Geopolymer cement pastes were organized using slag and fly ash as an aluminosilicate source, (1:1) sodium silicate and sodium hydroxide 15 wt.% as an alkali activator in the presence of organic dye pollutant reactive red 195, and Cu2+ ions (700 ppm) at different hydration times for up to 28 days. The physicochemical and mechanical properties of the prepared geopolymer cement mixes were further examined in relation to reactive dye pollutant and Cu2+ ions. The hydration characteristic was examined using the compressive strength and % of total porosity tests, as well as FTIR and XRD studies. Our findings support the 100% immobilization of both Cu2+ ions and organic dye pollutants in prepared geopolymer pastes for up to 28 days of hydration. Additionally, adding both Cu2+ ions and dye pollutants to the prepared geopolymer paste improves its mechanical properties, which is also supported by FTIR data. XRD and FTIR studies showed that the Cu2+ ions and dying bath effluent addition have no influence on the kind of hydration products that are produced. On the other hand, the geopolymerization process is negatively impacted by the presence of Cu2+ ions alone in the geopolymer paste.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3