Abstract
Hybrid composites based on electroactive polymers of diphenylamine-2-carboxylic acid (PDPAC) and highly porous carbon with a hierarchical pore structure were prepared for the first time. Activated IR-pyrolyzed polyacrylonitrile (IR-PAN-a), characterized by a highly developed surface, was chosen as a highly porous N-doped carbon component of the hybrid materials. IR-PAN-a was prepared using pyrolysis of polyacrylonitrile (PAN) in the presence of potassium hydroxide under IR radiation. Composite materials were obtained using oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) in the presence of IR-PAN-a both in an acidic and an alkaline medium. The composite materials were IR-heated to reduce the oxygen content and enhance their physical and chemical properties. The chemical structure, morphology, and electrical and thermal properties of the developed IR-PAN-a/PDPAC composites were investigated. The IR-PAN-a/PDPAC composites are thermally stable and electrically conductive. During the synthesis of the composites in an acidic medium, doping of the polymer component occurs, which makes the main contribution to the composite conductivity (1.3 × 10–5 S/cm). A sharp drop in the electrical conductivity of the IR-PAN-a/PDPACac-IR composites to 3.4 × 10–10 S/cm is associated with the removal of the dopant during IR heating. The IR-PAN-a/PDPACalk composites prepared before and after IR heating show a gradual increase in electrical conductivity by five orders of magnitude to 1.6 × 10–5 S/cm at 25–106 Hz. IR heating of the obtained materials leads to a significant increase in their thermal properties. The IR-heated composites lose half of their initial weight in an inert atmosphere at temperatures above 1000 °C, whereas for IR-PAN-a/PDPAC, the temperature range is 840–849 °C.
Subject
Polymers and Plastics,General Chemistry
Reference48 articles.
1. Perspectives for electrochemical capacitors and related devices;Simon;Nat. Mater.,2020
2. A review on nano-/microstructured naterials constructed by electrochemical technologies for supercapacitors;Lv;Nano-Micro Lett.,2020
3. Electrochemical supercapacitors (a review);Volfkovich;Russ. J. Electrochem.,2021
4. Rajagopal, S., Vallikkattil, R.P., Ibrahim, M.M., and Velev, D.G. (2022). Electrode materials for supercapacitors in hybrid electric vehicles: Challenges and current progress. Condens. Matter, 7.
5. Latest advances in supercapacitors: From new electrode materials to novel device designs;Wang;Chem. Soc. Rev.,2017
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献