Affiliation:
1. Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
Abstract
The pH-responsive fluorescent P(1,8-naphthalic anhydride (NA)-acrylic acid (AA)) matrix was successfully prepared by a doping method using poly(acrylic acid) (PAA) as a pH-sensitive polymer and NA as a fluorescent tracer. The fluorescent behaviors of the used NA dispersed in PAA frameworks were demonstrated based on fractal features combined with various characterizations, such as small-angle X-ray scattering (SAXS) patterns, photoluminescence (PL) spectra, scanning electron microscope (SEM) images, thermogravimetry (TG) profiles, Fourier transform infrared (FT-IR) spectroscopy, and time-resolved decays. The effects of NA-doping on the representative fluorescent P(NA-AA) were investigated, in which the fluorescent performance of the doped NA was emphasized. The results indicated that aggregated clusters of the doped NA were gradually serious with an increase in NA doping amount or extension of NA doping time, accompanied by an increase in mass fractal dimension (Dm) values. Meanwhile, the doped NA presented stable fluorescent properties during the swelling–shrinking process of PAA. Ibuprofen (IBU) was used as a model drug, and fractal evolutions of the obtained P(NA-AA) along with the drug loading and releasing behaviors were evaluated via SAXS patterns, in which the drug-loaded P(NA-AA) presented surface fractal (Ds) characteristics, while the Dm value varied from 2.94 to 2.58 during sustained drug-release in pH 2.0, indicating occurrences of its structural transformation from dense to loose with extension of IBU-releasing time. Finally, the cytotoxicity and cellular uptake behaviors of the obtained P(NA-AA) were preliminarily explored. These demonstrations revealed that the resultant P(NA-AA) should be a potential intelligent-responsive drug carrier for targeted delivery.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry