The Hypervelocity Impact Behavior and Energy Absorption Evaluation of Fabric

Author:

Xu Huadong1ORCID,Yu Dong2ORCID,Cui Jiaxin1,Shi Zhixin1,Song Di3,Miao Changqing1

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin Institute of Technology, Harbin 150001, China

2. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China

3. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

In this work, the mechanical behavior and energy absorption characteristics of flexible fabric under hypervelocity impact (HVI) were investigated. Basalt fabric, ultra-high molecular weight polyethylene (UHMWPE) fabric, and aluminum alloy (Al) plate were chosen to be the sample materials for their excellent mechanical properties and applicative prospect in spacecraft shielding. HVI experiments had been conducted with the help of a two-stage light-gas gun facility, wherein Al projectile with 3.97 mm diameter was launched at velocities in the range 4.1~4.3 km/s. Impact conditions and areal density were kept constant for all targets. The microstructural damage morphology of fiber post-impact was characterized using a scanning electron microscope (SEM). Analysis results show that a brittle fracture occurred for Basalt fiber during HVI. On the contrary, the ductile fractures with large-scale plastic deformation and apparent thermal softening/melting of the material had happened on the UHMWPE fiber when subjected to a projectile impact. According to the HVI shielding performance and microstructural damage analysis results, it can be inferred that ductile fractures and thermal softening/melting of the material were the prevailing energy absorption behaviors of UHMWPE fabric, which leads to absorbing more impact energy than Basalt fabric and eventually, contributes the superior shielding performance.

Funder

National Natural Science Foundation of China

Advanced Research Project of Manned Spaceflight

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3