Reducing Interface Defects and Porosity of Adhesive Bonded Aluminum Alloy Joints via Ultrasonic Vibration

Author:

Wang Hui12,Kang Guodong13,Chen Yizhe1,Liu Zhaoyi14ORCID,Hua Lin1

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Longzhong Laboratory, Xiangyang 441000, China

3. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China

4. Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China

Abstract

The surface microstructure formed by physical or chemical modification is essential for the desired joint strength. However, defects in the bonding interface and adhesive can be found. Such defects decrease shear strength and durability. In this study, ultrasonic vibration was applied to liquid adhesive on the sandblasted aluminum alloy plates. With ultrasonic treatment, the joints obtained the compact bonding interfaces and lower porosity of the adhesive layer. The treatment improved the shear strength by 9.1%. After two weeks of hydrothermal aging, the shear strength of joints only sandblasted decreased drastically by 48.9%, while it was 14% for the joints with ultrasonic vibration. The cavitation effect in the adhesive was detected by the aluminum foil erosion method. The result showed that a great number of micro-jets generated by the cavitation effect have intensive impact on the bonding interface which provide the adhesive with powerful force to fill the micro-grooves. Another finding in this work is that bubbles were gathered in the adhesive away from the vibration area. This mechanism was successfully used to reduce the porosity of the adhesive layer of joints.

Funder

National Natural Science Foundation Council of China

Key R&D Program of Hubei Province

Young Elite Scientists Sponsorship Program by CAST

China Postdoctoral Science Foundation

111 Project

Industrialization Project of Xiangyang Technology Transfer Center of Wuhan University of Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3