Additive Manufacturing and Mechanical Characterization of PLA-Based Skull Surrogates

Author:

Mantecón RamiroORCID,Marco MiguelORCID,Muñoz-Sanchez AnaORCID,Youssef GeorgeORCID,Díaz-Álvarez JoséORCID,Miguélez HenarORCID

Abstract

Several occupational and leisure activities involve a high risk of head impacts, resulting in varying degrees of injuries with chronic consequences that adversely affect life quality. The design and manufacturing of effective head protections rely on proper head simulators to mimic the behavior to impact loading. 3D-printed human skulls are reported herein to address the need for reproducible, cost-effective, anatomically-correct surrogates. To demonstrate the viability of the investigated approach, surrogate bone sections and skulls were mechanically tested under quasi-static loading conditions. The 3D-printed bone sections were flexural tested, elucidating the effect of printing orientations and the sample geometry on their mechanical behavior. The printing orientation minimally influenced the results due to the high infill percentage, while the sample geometry played a major role in the flexural properties because of the change in the section properties. The surrogate skulls were submitted to lateral compression and frontal penetration tests to assess the impact of the sectioning strategy on the overall mechanical performance. Results indicate that PLA-based surrogates reasonably reproduce the behavior of skulls. In addition, the sectioning strategy elucidated the effect of skull sutures, while streamlining the additive manufacturing process. The outcomes lay the foundation for future research seeking a complete surrogate head.

Funder

Spanish Ministry of Science and Innovation

US-Spain Fulbright Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3