Electrospun Nanomaterials Based on Cellulose and Its Derivatives for Cell Cultures: Recent Developments and Challenges

Author:

Peranidze Kristina1ORCID,Safronova Tatiana V.12ORCID,Kildeeva Nataliya R.3ORCID

Affiliation:

1. Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia

2. Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia

3. Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin State University of Russia, Malaya Kaluzhskaya 1, 119071 Moscow, Russia

Abstract

The development of electrospun nanofibers based on cellulose and its derivatives is an inalienable task of modern materials science branches related to biomedical engineering. The considerable compatibility with multiple cell lines and capability to form unaligned nanofibrous frameworks help reproduce the properties of natural extracellular matrix and ensure scaffold applications as cell carriers promoting substantial cell adhesion, growth, and proliferation. In this paper, we are focusing on the structural features of cellulose itself and electrospun cellulosic fibers, including fiber diameter, spacing, and alignment responsible for facilitated cell capture. The study emphasizes the role of the most frequently discussed cellulose derivatives (cellulose acetate, carboxymethylcellulose, hydroxypropyl cellulose, etc.) and composites in scaffolding and cell culturing. The key issues of the electrospinning technique in scaffold design and insufficient micromechanics assessment are discussed. Based on recent studies aiming at the fabrication of artificial 2D and 3D nanofiber matrices, the current research provides the applicability assessment of the scaffolds toward osteoblasts (hFOB line), fibroblastic (NIH/3T3, HDF, HFF-1, L929 lines), endothelial (HUVEC line), and several other cell types. Furthermore, a critical aspect of cell adhesion through the adsorption of proteins on the surfaces is touched upon.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3