Self-Aware Artificial Coiled Yarn Muscles with Enhanced Electrical Conductivity and Durability via a Two-Step Process

Author:

Gong Yongqi1,Chen Wanyi2,Li Jianyang1,Zhao Shun1,Ren Luquan1,Wang Kunyang1ORCID,Li Bingqian1

Affiliation:

1. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

2. State Grid Jilin Electric Power Co., Ltd., Changchun 130022, China

Abstract

Muscles are capable of modulating the body and adapting to environmental changes with a highly integrated sensing and actuation. Inspired by biological muscles, coiled/twisted fibers are adopted that can convert volume expansion into axial contraction and offer the advantages of flexibility and light weight. However, the sensing-actuation integrated fish line/yarn-based artificial muscles are still barely reported due to the poor actuation-sensing interface with off-the-shelf fibers. We report herein artificial coiled yarn muscles with self-sensing and actuation functions using the commercially available yarns. Via a two-step process, the artificial coiled yarn muscles are proved to obtain enhanced electrical conductivity and durability, which facilitates the long-term application in human-robot interfaces. The resistivity is successfully reduced from 172.39 Ω·cm (first step) to 1.27 Ω·cm (second step). The multimode sense of stretch strain, pressure, and actuation-sensing are analyzed and proved to have good linearity, stability and durability. The muscles could achieve a sensitivity (gauge factor, GF) of the contraction strain perception up to 1.5. We further demonstrate this self-aware artificial coiled yarn muscles could empower non-active objects with actuation and real-time monitoring capabilities without causing damage to the objects. Overall, this work provides a facile and versatile tool in improving the actuation-sensing performances of the artificial coiled yarn muscles and has the potential in building smart and interactive soft actuation systems.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3