Synthesis and Characterization of Solution-Processible Donor-Acceptor Electrochromic Conjugated Copolymers Based on Quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine as the Acceptor Unit

Author:

Xu Zhen1,Wang Bozhen1,Kong Lingqian2,Zhao Jinsheng3ORCID,Du Yuchang4

Affiliation:

1. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China

2. Dongchang College, Liaocheng University, Liaocheng 252059, China

3. Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China

4. Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China

Abstract

Donor-acceptor (D-A) type conjugated polymers are of high interest in the field of electrochromism. In this study, three novel conjugated copolymers (PBPE–1, PBPE-2 and PBPE-3) based on quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine (A) as the acceptor unit and 4,8-bis((2-octyldodecyl)oxy)benzo[1,2-b:4,5-b′]dithiophene (D1) and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (ProDOT-decyl2, D2) as the donor units with different donor-to-acceptor ratios were successfully synthesized through Stille coupling polymerization. The polymers were then characterized by cyclic voltammetry (CV), fourier transform infrared (FT-IR) spectoscopy, X-ray photoelectron spectroscopy (XPS), spectroelectrochemistry, thermogravimetry (TG), electrochromic switching and colorimetry. Optical band gap values were calculated as 1.99 eV, 2.02 eV and 2.03 eV, respectively. The three copolymers have good solubility, distinct redox peaks, wide absorption spectra, good thermal stabilities, bright color changes and significant electrochromic switching properties. Compared to the other two copolymers, the PBPE-3 film exhibited high coloration efficiency values of 513 cm2·C−1 at 504 nm and 475 cm2·C−1 at 1500 nm. The films have the advantage of exhibiting cathodic and anodic coloration.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3