On the Pin-Bearing Strength of Additively Manufactured Polymer Parts

Author:

Khosravani Mohammad Reza1ORCID,Sadeghian Hadi2,Ayatollahi Majid R.2,Reinicke Tamara1

Affiliation:

1. Chair of Product Development, University of Siegen, Paul-Bonatz-Str. 9-11, 57068 Siegen, Germany

2. Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

Abstract

Due to the wide scope of applications of additive manufacturing (AM) in making final products, the mechanical strength of AM parts has become very important. Therefore, different tests are being developed to determine the structural integrity of three-dimensional printed components. In this respect, the pin-bearing test is designed to evaluate the response of a fastener, plate, and hole to stress. In this study, two different polymer materials were used to fabricate the samples utilizing the fused deposition modeling technique. Since the specimen width and hole diameter have effects on the pin-bearing strength and structural integrity of the parts, we prepared the specimens with four hole diameters to determine the influence of this ratio. A series of tensile tests were performed, and the stiffness and pin-bearing strength of additively manufactured specimens were determined. The preferred bearing failure mode was observed in several tested specimens. Subsequently, a scanning electron microscope investigation was conducted on the damaged area of the examined specimens to obtain insights into the damage mechanisms and failure behavior of the aforementioned specimens. We used digital image correlation technique to determine the strain field of dumbbell-shaped test coupons. The results of this research can be utilized for new designs of AM parts with a higher mechanical strength.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3