Enhanced Mechanical Stability and Hydrophobicity of Cellulose Aerogels via Quantitative Doping of Nano-Lignin

Author:

Wang Xiaoyu1ORCID,Yang Xinyu1,Wu Zhen1,Liu Xiaoyan1,Li Qian2ORCID,Zhu Wenkai2ORCID,Jiang Yetao1,Hu Lei1

Affiliation:

1. Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China

2. College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China

Abstract

As a porous biomass sustainable material, cellulose aerogel has attracted significant attention due to its unique properties in various applications. However, its mechanical stability and hydrophobicity are huge obstacles hindering practical applications. In this work, nano-lignin quantitative doping cellulose nanofiber aerogel was successfully fabricated via liquid nitrogen freeze drying combing vacuum oven drying. The impact of various parameters (lignin content, temperature, and matrix concentration) on the property of the as-prepared materials was systematically explored, revealing the optimum conditions. The morphology, mechanical properties, internal structure, and thermal degradation of the as-prepared aerogels were characterized by various methods (compression test, contact angle, SEM, BET, DSC, and TGA). Compared with pure cellulose aerogel, the addition of nano-lignin did not significantly change the pore size and specific surface area of the material but could improve its thermal stability. In particular, the enhanced mechanical stable and hydrophobic properties of cellulose aerogel via the quantitative doping of nano-lignin was confirmed. The mechanical compressive strength of 160–13.5 C/L-aerogel is as high as 0.913 MPa, while the contact angle was nearly reaching 90°. Significantly, this study provides a new strategy for constructing a novel cellulose nanofiber aerogel with mechanical stability and hydrophobicity.

Funder

Natural Science Foundation of Jiangsu Province of China

National Natural Science Foundation of China

Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3