Crushing Responses of Expanded Polypropylene Foam

Author:

Xing Yueqing1ORCID,Sun Deqiang1,Zhang Meiyun1,Shu Guowei1ORCID

Affiliation:

1. College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

This paper aimed to experimentally clarify the crushing mechanism and performance of expanded polypropylene foam (EPP) and analyze the influence of density and thickness on its mechanical behavior and energy absorption properties under static crushing loadings. Hence, a series of compression tests were carried out on EPP foams with different densities and thicknesses. For foam with a density of 60 kg/m3, the mean crushing strength, energy absorption (Ea), energy absorption efficiency (Ef), specific energy absorption (SEA), and energy absorption per unit volume (w) increased by 245.3%, 187.2%, 42.3%, 54.3%, and 242.8%, respectively, compared to foam with a density of 20 kg/m3. Meanwhile, compared to foam with a thickness of 30 mm, the mean crushing strength, energy absorption (Ea), energy absorption efficiency (Ef), SEA, and energy absorption per unit volume (w) for foam with a thickness of 75 mm increased by 53.3%, 25.2%, −10.8%, −4.7%, and −10.6%, respectively. The results show that foam density has a significantly greater influence on static compressive performance than foam thickness. The microstructures of the EPP foam before and after static compression were compared by observing with a scanning electron microscope (SEM), and the failure mechanism was analyzed. Results showed that the load and energy as well as the deformation and instability processes of its cells were transferred layer by layer. The influence of density on the degree of destruction of the internal cells was obvious. Due to its larger mass and larger internal damping, thicker foams were less damaged, and less deformation was produced. Additionally, the EPP foam exhibited a considerable ability to recover after compression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3