Enhanced Synaptic Properties in Biocompatible Casein Electrolyte via Microwave-Assisted Efficient Solution Synthesis

Author:

Kim Hwi-SuORCID,Park HaminORCID,Cho Won-JuORCID

Abstract

In this study, we fabricated an electric double-layer transistor (EDLT), a synaptic device, by preparing a casein biopolymer electrolyte solution using an efficient microwave-assisted synthesis to replace the conventional heating (heat stirrer) synthesis. Microwave irradiation (MWI) is more efficient in transferring energy to materials than heat stirrer, which significantly reduces the preparation time for casein electrolytes. The capacitance–frequency characteristics of metal–insulator–metal configurations applying the casein electrolyte prepared through MWI or a heat stirrer were measured. The capacitance of the MWI synthetic casein was 3.58 μF/cm2 at 1 Hz, which was higher than that of the heat stirrer (1.78 μF/cm2), confirming a stronger EDL gating effect. Electrolyte-gated EDLTs using two different casein electrolytes as gate-insulating films were fabricated. The MWI synthetic casein exhibited superior EDLT electrical characteristics compared to the heat stirrer. Meanwhile, essential synaptic functions, including excitatory post-synaptic current, paired-pulse facilitation, signal filtering, and potentiation/depression, were successfully demonstrated in both EDLTs. However, MWI synthetic casein electrolyte-gated EDLT showed higher synaptic facilitation than the heat stirrer. Furthermore, we performed an MNIST handwritten-digit-recognition task using a multilayer artificial neural network and MWI synthetic casein EDLT achieved a higher recognition rate of 91.24%. The results suggest that microwave-assisted casein solution synthesis is an effective method for realizing biocompatible neuromorphic systems.

Funder

National Research Foundation of Korea (NRF), grant funded by the Korean government

Korea Institute for Advancement of Technology (KIAT), grant funded by the Korean Government

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3