A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions

Author:

Mao Haiyan1ORCID,Zhang Qun1,Lin Ling1,He Xuemei1,Wang Lili1

Affiliation:

1. School of Textile & Clothing, Yancheng Institute of Technology, Yancheng 224051, China

Abstract

Polyurethanes with self-healing and reprocessing capabilities are promising in eco-friendly applications. Here, a self-healable and recyclable zwitterionic polyurethane (ZPU) was developed by introducing ionic bonds between protonated ammonium groups and sulfonic acid moieties. The structure of the synthesized ZPU was characterized by FTIR and XPS. The thermal, mechanical, self-healing and recyclable properties of ZPU were also investigated in detail. Compared with cationic polyurethane (CPU), ZPU shows similar thermal stability. The physical cross-linking network formed between zwitterion groups can dissipate strain energy as a weak dynamic bond, endowing ZPU with outstanding mechanical and elastic recovery properties, including the high tensile strength of 7.38 MPa, high elongation at a break of 980%, and fast elastic recovery ability. Additionally, ZPU exhibits a healing efficiency of over 93% at 50 °C for 1.5 h as a result of the dynamic reconstruction of reversible ionic bonds. Furthermore, ZPU can be well reprocessed by solution casting and hot-pressing with a recovery efficiency above 88%. The excellent mechanical properties, fast repairing capability, and good recyclability not only enable polyurethane with a promising application in protective coatings for textiles and paints but also make it a superior candidate as stretchable substrates for wearable electronic devices and strain sensors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Opening Project of Zhejiang Key Laboratory of Clean Dyeing and Finishing Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3