Design of New Dispersants Using Machine Learning and Visual Analytics

Author:

Martínez María Jimena1ORCID,Naveiro Roi234ORCID,Soto Axel J.56,Talavante Pablo3,Kim Lee Shin-Ho3ORCID,Gómez Arrayas Ramón37ORCID,Franco Mario7,Mauleón Pablo7,Lozano Ordóñez Héctor8,Revilla López Guillermo8,Bernabei Marco8,Campillo Nuria E.239ORCID,Ponzoni Ignacio56ORCID

Affiliation:

1. ISISTAN (CONICET-UNCPBA) Campus Universitario—Paraje Arroyo Seco, Tandil 7000, Argentina

2. Institute of Mathematical Sciences (ICMAT-CSIC), Nicolás Cabrera, nº 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain

3. AItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, Spain

4. Campus Pirineos, CUNEF Universidad, Calle de los Pirineos, 55, 28040 Madrid, Spain

5. Institute for Computer Science and Engineering (UNS–CONICET), San Andrés 800, Campus Palihue, Bahía Blanca 8000, Argentina

6. Department of Computer Science and Engineering, Universidad Nacional del Sur, San Andrés 800, Campus Palihue, Bahía Blanca 8000, Argentina

7. Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem) UAM, 28049 Madrid, Spain

8. Repsol Technology Lab DC Technology & Corporate Venturing, Agustín de Betancourt s/n, Móstoles, 28935 Madrid, Spain

9. CIB Margarita Salas (CSIC), Ramiro de Maeztu, 9, 28740 Madrid, Spain

Abstract

Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts’ decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of 5.50±0.34 and a root mean square error of 7.56±0.47, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties.

Funder

the Argentinean National Council of Scientific and Technological Research

the National Agency for the Promotion of Research, Technological Development and Innovation of Argentina

the Universidad Nacional del Sur

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3