Affiliation:
1. College of Optoelectronic Manufacturing, Zhejiang Industry & Trade Vocational College, Wenzhou 325000, China
2. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Abstract
Segregated conductive polymer composites exhibit excellent electrical properties with a low percolation threshold. However, the mechanical properties of the segregated conductive polymer composites were always poor because the conductive fillers at the interfaces hinder polymer chain diffusion and thus lead to weak interfacial interaction between the conductive fillers and the polymer matrix. In this paper, polyamide-6 and polyamide-612 microspheres were synthesized via the in situ anionic ring opening of caprolactam and laurolactam. Segregated graphite sheets/polyamide-6(GS/PA6) and polyamide-612(PA612) composites with good mechanical properties were realized via high-pressure solid-phase compression molding. The microstructures of the composite samples were observed by scanning electron microscopy, which showed that the formation of a GS-conductive network at the PA6 granule interfaces in the segregated conductive structures and the adopting of PA612 considerably improved the interfacial adhesion of the composites. A superior impact strength of 5.1 kJ/m2 was achieved with 50 wt% PA612 loading owing to improvements in the interface compatibility between PA6 and GS. The composites possessed an ultralow percolation threshold, which was ascribed to the segregated network structure being successfully constructed inside the material. As for GS/PA6 composites, the combination of segregated GS-conductive networks achieved an ultralow percolation of 2.8 vol%. The percolation of 80PA6/20PA612-GS composites was slightly higher, measuring up to 3.2 vol%. Moreover, the thermal conductivity of the 80PA6/20PA612-GS composites increased from 0.26 to around 0.5 W/(m·K), which was 1.9 times larger than the pure polyamide.
Funder
Wenzhou Science and Technology Bureau
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献