Effect of Salinity and Polycarboxylate Superplasticizer on Fresh Property of Seawater-Blended Cement

Author:

Ren Jun1ORCID,Li Hao1,Zhang Ji1,Yan Shuo1,Zhu Haiyan1,Xu Shengye2,Shi Shi3,Mao Jianghong4ORCID

Affiliation:

1. Urban Construction and Digital City Teaching Experiment Center, School of Architecture and Planning, Yunnan University, Kunming 650550, China

2. Guangdong Power Grid Energy Development Co., Ltd., Guangzhou 510800, China

3. Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, UK

4. School of Architecture and Environment, Sichuan University, Chengdu 610207, China

Abstract

The salinity of seawater can affect the properties of mixtures of polycarboxylate superplasticizer (PCE) and seawater. The purpose of this research is to study the effect of different salinities of water on the property of seawater-mixed cement slurry. Two PCE types with different side chain lengths and acid–ether ratios were used. Their physicochemical properties were explained by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), turbidimetry, and dynamic light scattering (DLS) analysis. The performance of the PCEs was measured using slump, rheological energy, and solidification time. Finally, by measuring the adsorption volume, adsorption layer thickness, and water film thickness (WFT), the mechanisms involved in performance modification were studied. The results show that the workability and rheological performances of seawater-mixed cement paste are decreased by increasing salinity. With the increase in salinity, the minislump of the seawater-blended cement pastes with two PCEs decreased from 285 mm to 120 mm and from 280 mm to 78 mm, respectively, and the thixotropic areas were increased from less than 2000 Pa/s to above 10,000 Pa/s. Moreover, the adsorption amount of the two PCEs in the cement mixed with high-salinity seawater decreased by 55.99% and 71.56%, respectively, and the thickness of the adsorption layer and water film was decreased with increasing salinity. Compared with the two PCEs, PCE with long side chains and a high acid–ether ratio provided better salt resistance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Scientific Research and Development Project of Yunnan Provincial Department of Housing and Urban-rural Development

College Student Innovation and Entrepreneurship Training Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3