3,4-Enhanced Polymerization of Isoprene Catalyzed by Side-Arm Tridentate Iminopyridine Iron Complex with High Activity: Optimization via Response Surface Methodology

Author:

Han Zhenyu1,Zhang Yongqiang1,Wang Liang1ORCID,Zhu Guangqian1,Kuang Jia1,Zhu Guangyu1,Xu Guangqiang1ORCID,Wang Qinggang1ORCID

Affiliation:

1. Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Abstract

3,4-Enhanced polymerization of isoprene catalyzed by late transition metal with high activity remains one of the great challenges in synthetic rubber chemistry. Herein, a library of [N, N, X] tridentate iminopyridine iron chloride pre-catalysts (Fe 1–4) with the side arm were synthesized and confirmed by the element analysis and HRMS. All the iron compounds served as highly efficient pre-catalysts for 3,4-enhanced (up to 62%) isoprene polymerization when 500 equivalent MAOs were utilized as co-catalysts, delivering the corresponding high-performance polyisoprenes. Furthermore, optimization via single factor and response surface method, it was observed that the highest activity was obtained by complex Fe 2 with 4.0889 × 107 g·mol(Fe)−1·h−1 under the following conditions: Al/Fe = 683; IP/Fe = 7095; t = 0.52 min.

Funder

Young Taishan Scholars Program of Shandong Province

Shandong Provincial Natural Science Foundation

Scientific Research and Innovation Fund Project of Shandong Energy Institute

Special Fund Project of Shandong Energy Institute

Shandong Key R&D Plan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3