Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage

Author:

Younes Khaled1ORCID,Moghnie Sara1ORCID,Khader Lina1,Obeid Emil1ORCID,Mouhtady Omar1ORCID,Grasset Laurent2,Murshid Nimer1ORCID

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

2. Université de Poitiers, IC2MP, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, CEDEX 9, 86073 Poitiers, France

Abstract

Tropical Peatlands accumulate organic matter (OM) and a significant source of carbon dioxide (CO2) and methane (CH4) under anoxic conditions. However, it is still ambiguous where in the peat profile these OM and gases are produced. The composition of organic macromolecules that are present in peatland ecosystems are mainly lignin and polysaccharides. As greater concentrations of lignin are found to be strongly related to the high CO2 and CH4 concentrations under anoxic conditions in the surface peat, the need to study the degradation of lignin under anoxic and oxic conditions has emerged. In this study, we found that the “Wet Chemical Degradation” approach is the most preferable and qualified to evaluate the lignin degradation in soils accurately. Then, we applied PCA for the molecular fingerprint consisting of 11 major phenolic sub-units produced by alkaline oxidation using cupric oxide (II) along with alkaline hydrolysis of the lignin sample presented in the investigated peat column called “Sagnes”. The development of various characteristic indicators for lignin degradation state on the basis of the relative distribution of lignin phenols was measured by chromatography after CuO-NaOH oxidation. In order to achieve this aim, the so-called Principal Component Analysis (PCA) has been applied for the molecular fingerprint composed of the phenolic sub-units, yielded by CuO-NaOH oxidation. This approach aims to seek the efficiency of the already available proxies and potentially create new ones for the investigation of lignin burial along a peatland. Lignin phenol vegetation index (LPVI) is used for comparison. LPVI showed a higher correlation with PC1 rather than PC2. This confirms the potential of the application of LPVI to decipher vegetation change, even in a dynamic system as the peatland. The population is composed of the depth peat samples, and the variables are the proxies and relative contributions of the 11 yielded phenolic sub-units.

Funder

Ministère Français de l’Enseignement Supérieur et de la Recherche

Areva—Paris

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference34 articles.

1. Carbon accumulation in peatland;Clymo;Oikos,1998

2. Northern peatland carbon stocks and dynamics: A review;Yu;Biogeosciences,2012

3. Lignins and lignification: Selected issues;Boudet;Plant Physiol. Biochem.,2000

4. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products;Hedges;Anal. Chem.,1982

5. Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Basin;Staniszewski;Oceanologia,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3