Development of Benzobisoxazole-Based Novel Conjugated Polymers for Organic Thin-Film Transistors

Author:

Jeong WonJo1,Lee Kyumin2,Jang Jaeyoung2ORCID,Jung In Hwan1ORCID

Affiliation:

1. Human-Tech Convergence Program, Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

2. Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea

Abstract

Benzo[1,2-d:4,5-d′]bis(oxazole) (BBO) is a heterocyclic aromatic ring composed of one benzene ring and two oxazole rings, which has unique advantages on the facile synthesis without any column chromatography purification, high solubility on the common organic solvents and planar fused aromatic ring structure. However, BBO conjugated building block has rarely been used to develop conjugated polymers for organic thin film transistors (OTFTs). Three BBO-based monomers, BBO without π-spacer, BBO with non-alkylated thiophene π-spacer and BBO with alkylated thiophene π-spacer, were newly synthesized and they were copolymerized with a strong electron-donating cyclopentadithiophene conjugated building block to give three p-type BBO-based polymers. The polymer containing non-alkylated thiophene π-spacer showed the highest hole mobility of 2.2 × 10−2 cm2 V−1 s−1, which was 100 times higher than the other polymers. From the 2D grazing incidence X-ray diffraction data and simulated polymeric structures, we found that the intercalation of alkyl side chains on the polymer backbones was crucial to determine the intermolecular ordering in the film states, and the introduction of non-alkylated thiophene π-spacer to polymer backbone was the most effective to promote the intercalation of alkyl side chains in the film states and hole mobility in the devices.

Funder

National Research Foundation (NRF) of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference44 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3