Theoretical Derivation of the Effect of Bonding Current on the Bonding Interface during Anodic Bonding of PEG-Based Encapsulation Materials and Aluminum

Author:

Du Chao12,Zhao Yali12,Li Yong12

Affiliation:

1. Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China

2. Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China

Abstract

This study analyzed the mechanism underlying the effect of the bonding current on the bonding interface during anodic bonding on the basis of the anodic bonding of PEG (polyethylene glycol)-based encapsulation materials and Al. By establishing an equivalent electrical model, the effects of various electrical parameters on the dynamic performance of the bonding current were evaluated, and the change law of the bonding current transfer function was analyzed. By examining the gap deformation model, the conditions for contact between the interface gaps and the bonding current pair were determined, and the influence law of the gap deformation of the bonding interface was derived. By assessing the effect of the bonding current on the ionic behavior, we found that the larger the bonding current, the greater the number of activated mobile ions in the bonding material and the higher the field strength in the cation depletion area. From the anodic bonding experiments, it was found that increasing the bonding voltage can increase the peak current and improve the bonding efficiency. The SEM image after bonding shows that the bonding interface had no obvious defects; the higher bonding voltage can result in a thicker bonding layer.

Funder

National Natural Science Foundation of China

Doctoral Fund of Jinzhong University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the mechanism of glass-SiC-glass anodic bonding process;Journal of Micromechanics and Microengineering;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3