Low-Velocity Impact Resistance of 3D Re-Entrant Honeycomb Sandwich Structures with CFRP Face Sheets

Author:

Cui Zhen1ORCID,Qi Jiaqi1,Duan Yuechen1ORCID,Tie Ying1,Zheng Yanping1,Yang Jun2,Li Cheng1

Affiliation:

1. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

2. School of Aerospace and Mechanical Engineering, Changzhou Institute of Technology, Changzhou 213032, China

Abstract

Lightweight sandwich structures have been receiving significant attention. By studying and imitating the structure of biomaterials, its application in the design of sandwich structures has also been found to be feasible. With inspiration from the arrangement of fish scales, a 3D re-entrant honeycomb was designed. In addition, a honeycomb stacking method is proposed. The resultant novel re-entrant honeycomb was utilized as the core of the sandwich structure in order to increase the impact resistance of the sandwich structure under impact loads. The honeycomb core is created using 3D printing. By using low-velocity impact experiments, the mechanical properties of the sandwich structure with Carbon-Fiber-Reinforced Polymer (CFRP) face sheets under different impact energies were studied. To further investigate the effect of the structural parameters on the structural, mechanical properties, a simulation model was developed. Simulation methods examined the effect of structural variables on peak contact force, contact time, and energy absorption. Compared to traditional re-entrant honeycomb, the impact resistance of the improved structure is more significant. Under the same impact energy, the upper face sheet of the re-entrant honeycomb sandwich structure sustains less damage and deformation. The improved structure reduces the upper face sheet damage depth by an average of 12% compared to the traditional structure. In addition, increasing the thickness of the face sheet will enhance the impact resistance of the sandwich panel, but an excessively thick face sheet may decrease the structure’s energy absorption properties. Increasing the concave angle can effectively increase the energy absorption properties of the sandwich structure while preserving its original impact resistance. The research results show the advantages of the re-entrant honeycomb sandwich structure, which has certain significance for the study of the sandwich structure.

Funder

National Natural Science Foundations of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3