Effects of Ethylene-Propylene-Diene Monomers (EPDMs) with Different Moony Viscosity on Crystallization Behavior, Structure, and Mechanical Properties of Thermoplastic Vulcanizates (TPVs)

Author:

Song Li-Fu12,Bai Nan12,Shi Ying12ORCID,Wang Yuan-Xia1ORCID,Song Li-Xin12ORCID,Liu Li-Zhi1ORCID

Affiliation:

1. Advanced Manufacturing Institute of Polymer Industry, Shenyang University of Chemical Technology, Shenyang 110027, China

2. College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110027, China

Abstract

Moony viscosity of ethylene-propylene-diene monomers (EPDMs) can have effect on the crystallization dynamics, structure, and properties of EPDM/polypropylene (PP)-based thermoplastic vulcanizates (TPVs). TPVs with two different Moony viscosities are prepared via a twin-screw extruder, respectively. Crosslinked EPDM with lower Moony viscosity has a higher crosslinking density and the nucleation effect of its crosslink point improves the crystallization ability of PP in TPV, leading to PP phase crystallization at higher temperatures. For TPV with an EPDM of higher Moony viscosity, it has higher crystallinity and the EPDM phase crystallized earlier. Synchrotron radiation studies show that the EPDM with low Moony viscosity has no obvious crystalline structure, and the prepared TPV has an obvious phase separation structure, while the TPV with higher Mooney viscosity of the EPDM does not exhibit obvious phase separation, indicating that the longer EPDM chains have better compatibility with PP in TPV, also evidenced by the almost disappearance of the PP glass transition peak in TPV, from the dynamic mechanical analysis. The longer EPDM chains in TPV provide more physical entanglement and better interaction with PP molecules, resulting in a stronger strain hardening process, longer elongation at break, and higher tensile stress in TPV.

Funder

The Liaoning Pandeng Scholar program and scientific research funds from the Liaoning Education Department

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3