Abstract
We report an original method for directly fabricating gold nanoparticles (Au NPs) in a polymer matrix using a thermal treatment technique and theoretically and experimentally investigate their plasmonic properties. The polymeric-metallic nanocomposite samples were first prepared by simply mixing SU-8 resist and Au salt with different concentrations. The Au NPs growth was triggered inside the polymer through a thermal process on a hot plate and in air environment. The Au NPs creation was confirmed by the color of the nanocomposite thin films and by absorption spectra measurements. The Au NPs sizes and distributions were confirmed by transmission electron microscope measurements. It was found that the concentrations of Au salt and the annealing temperatures and durations are all crucial for tuning the Au NPs sizes and distributions, and, thus, their optical properties. We also propose a simulation model for calculations of Au NPs plasmonic properties inside a polymer medium. We realized that Au NPs having large sizes (50 to 100 nm) play an important role in absorption spectra measurements, as compared to the contribution of small NPs (<20 nm), even if the relative amount of big Au NPs is small. This simple, low-cost, and highly reproducible technique allows us to obtain plasmonic NPs within polymer thin films on a large scale, which can be potentially applied to many fields.
Subject
Polymers and Plastics,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献