Efficacy of Denture Cleansers on Microbial Adherence and Surface Topography of Conventional and CAD/CAM-Processed Denture Base Resins

Author:

Alfouzan Afnan F.,Tuwaym Malath,Aldaghri Ebtihal N.ORCID,Alojaymi Tagreed,Alotiabi Hadeel Minife,Taweel Sara M. Al,Al-Otaibi Hanan N.,Ali RizwanORCID,Alshehri HudaORCID,Labban Nawaf

Abstract

This study assessed the efficacy of five denture cleansers on the microbial adherence and surface topography of conventional and CAD/CAM denture base resins. Acrylic resin discs were fabricated using conventional, milling, and 3D printing methods (N = 180). The discs were contaminated with dual species of Candida albicans and Streptococcus mutans biofilm for 72 h and then disinfected with either of the denture cleansers (Fittydent cleansing tablets, 2% Chlorhexidine gluconate, 0.2% Chlorhexidine gluconate, 0.5% sodium hypochlorite, and 1% sodium hypochlorite (n = 10). Distilled water served as the control group. The colony-forming units of the microorganisms were calculated, followed by post-treatment surface roughness. Data were statistically analyzed using one-way ANOVA, paired t-test, and post hoc Tukey HSD test (α = 0.05). Among the denture cleansers, 2% Chlorhexidine gluconate, 0.5% sodium hypochlorite, and 1% sodium hypochlorite had the best cleansing effect on the resin discs and demonstrated zero growth of colonies for both the species. Comparing the material groups, the 3D-processed discs showed higher colony-forming units followed by the conventional and CAD/CAM milled group. The highest surface roughness was demonstrated by the 3D-printed discs (0.690 ± 0.08 μm), followed by the conventional (0.493 ± 0.11 μm) and the milled groups (0.301 ± 0.08 μm). The tested chemical denture cleansers affected the Candida albicans and Streptococcus mutans adhesion compared to control discs immersed in distilled water. The clinician may recommend to their patient to use 2% chlorhexidine gluconate for the disinfection of CAD/CAM PMMA denture base materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3