Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan

Author:

Javed Nuzhat,Muhammad Sana,Iram Shazia,Ramay Muhammad WajahatORCID,Jaffri Shaan Bibi,Damak MariemORCID,Fekete György,Varga Zsolt,Székács AndrásORCID,Aleksza László

Abstract

The current energy crisis and waste management problems have compelled people to find alternatives to conventional non-renewable fuels and utilize waste to recover energy. Pyrolysis of plastics, which make up a considerable portion of municipal and industrial waste, has emerged as a feasible resolution to both satisfy our energy needs and mitigate the issue of plastic waste. This study was therefore conducted to find a solution for plastic waste management problems, as well as to find an alternative to mitigate the current energy crisis. Pyrolysis of five of the most commonly used plastics, polyethylene terephthalate (PET), high- and low-density polyethylene (HDPE, LDPE), polypropylene (PP), and polystyrene (PS), was executed in a pyrolytic reactor designed utilizing a cylindrical shaped stainless steel container with pressure and temperature gauges and a condenser to cool down the hydrocarbons produced. The liquid products collected were highly flammable and their chemical properties revealed them as fuel alternatives. Among them, the highest yield of fuel conversion (82%) was observed for HDPE followed by PP, PS, LDPE, PS, and PET (61.8%, 58.0%, 50.0%, and 11.0%, respectively). The calorific values of the products, 46.2, 46.2, 45.9, 42.8 and 42.4 MJ/kg for LPDE, PP, HPDE, PS, and PET, respectively, were comparable to those of diesel and gasoline. Spectroscopic and chromatographic analysis proved the presence of alkanes and alkenes with carbon number ranges of C9–C15, C9–C24, C10–C21, C10–C28, and C9–C17 for PP, PET, HDPE, LDPE, and PS, respectively. If implemented, the study will prove to be beneficial and contribute to mitigating the major energy and environmental issues of developing countries, as well as enhance entrepreneurship opportunities by replicating the process at small-scale and industrial levels.

Funder

Hungarian National Research, Development, and Innovation Office

Hungarian Ministry of Technology and Industry

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference77 articles.

1. Deep learning for plastic waste classification system;Bobulski;Appl. Comput. Intell. Soft Comput.,2021

2. Aleksza, L. (2014). Waste Management, Profikomp Kft.. Available online: http://www.nyf.hu/agrtud/sites/www.nye.hu.agrtud/files/konyvek/SZIE_Konyv_Angol_teljes.pdf.

3. Rollinson, A.N., and Oladejo, J. (2020). Chemical Recycling: Status, Sustainability, and Environmental Impacts, Global Alliance for Incinerator Alternatives.

4. The United States’ contribution of plastic waste to land and ocean;Law;Sci. Adv.,2020

5. Microplastic pollution, a threat to marine ecosystem and human health: A short review;Sharma;Environ. Sci. Poll. Res.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3