Abstract
In the current study, nanocomposites were prepared by combining k-carrageenan, polyvinyl alcohol (PVA), and doped nanoparticles (Magnesium oxide) MgO, (Magnesium Zinc oxide) MgZnO 1%, MgZnO 3%, and MgZnO 5%. The nanoparticles were synthesized by a sol–gel method and mixed with a mixture of k-carrageenan/PVA (Ca/PVA) in various ratios. The structure of the composites was analyzed using thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The Ca/PVA mixture was then mixed with nanoparticles and loaded with active ingredient, catechin. Scanning electron microscope (SEM) and texture analysis were performed to analyze the nanocomposites. Entrapment efficiency (EE%) and drug release studies confirmed that k-carrageenan/PVA/MgZnO 5% had the highest EE% at 81.58% and a drug release of 75.21% ± 0.94. The EE% of k-carrageenan/PVA/MgO was 55.21% and its drug release was 45%. This indicates that ZnO plays an effective role in the structure and performance of Ca/PVA composites. The SEM images of MgO composites show smoother surfaces compared to MgZnO composites. This may be one of the reasons for the increased EE% and drug release of MgZnO composites. The addition of ZnO to the composite structure can lead to the appearance of pores on the surface of the composite, increasing entrapment and drug release.
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献