Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used for VARI Process

Author:

Zhang Yu12,Ji Yundong2,Cao Dongfeng12,Zhang Hongyuan3,Chen Hongda12,Hu Haixiao14

Affiliation:

1. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528000, China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

3. Luoyang Sunrui Rubber & Plastic Science and Technology Co., Ltd., Luoyang 471023, China

4. Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China

Abstract

This paper presents an easy and low-cost flame treatment method to improve the bonding performance of GF/EP (Glass Fiber-Reinforced Epoxy) pultrusion plates, which are using widely for large size wind blades. In order to explore the effect of flame treatment on the bonding performance of the precast GF/EP pultruded sheet vs. the infusion plate, the GF/EP pultruded sheets were treated with different flame treatment cycles and were embedded in the fiber fabrics during the vacuum-assisted resin infusion process (VARI). The bonding shear strengths were measured by tensile shear tests. It is found that after 1, 3, 5, and 7 flame treatments, the tensile shear strength between the GF/EP pultrusion plate and infusion plate increased by 8.0%, 13.3%, 22.44%, and −2.1%, respectively. This indicates that the maximum tensile shear strength can be obtained after five times of flame treatment. In addition, DCB and ENF tests were also adopted to characterize the fracture toughness of the bonding interface with the optimal flame treatment. It is found that the optimal treatment gives increments of 21.84% and 78.36% for G I C and G II C, respectively. Finally, the surficial topography of the flame-treated GF/EP pultruded sheets were characterized by optical microscopy, SEM, contact angle test, FTIR, and XPS. The results show that flame treatment plays an impact on the interfacial performance through the combination of physical meshing locking and chemical bonding mechanism. Proper flame treatment would remove the weak boundary layer and mold release agent on the surface of the GF/EP pultruded sheet, etch the bonding surface and improve the oxygen-containing polar groups, such as C–O and O–C=O, to improve the surface roughness and surface tension coefficient of pultruded sheet to enhance the bonding performance. Excessive flame treatment destroys the integrity of epoxy matrix on bonding surface which results into the exposure of the glass fiber, and the carbonization of release agent and resin on the surface loosen the surficial structure, which reduces the bonding properties.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3