Preparation of Superhydrophobic Materials and Establishment of Anticorrosive Coatings on the Tinplate Substrate by Alkylation of Graphene Oxide

Author:

Gu Jiangdong1,An Qiufeng1,Li Jialong2,Ge Ping1,Wu Yanyan1,Li Yihan3

Affiliation:

1. College of Chemistry & Chemical Engineering, Shaanxi University of Science &Technology, Xi’an 710021, China

2. Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

3. College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science &Technology, Xi’an 710021, China

Abstract

Corrosion of structural parts not only reduces the service life of the equipment but also causes safety accidents, so building a long-lasting anti-corrosion coating on its surface is the key to solving this problem. Under the action of alkali catalysis, n-octyltriethoxysilane (OTES), dimethyldimethoxysilane (DMDMS), and perfluorodecyltrimethoxysilane (FTMS) hydrolyzed and polycondensed co-modified graphene oxide (GO), modified to synthesize a self-cleaning superhydrophobic material fluorosilane-modified graphene oxide (FGO). The structure, film morphology, and properties of FGO were systematically characterized. The results showed that the newly synthesized FGO was successfully modified by long-chain fluorocarbon groups and silanes. FGO presented an uneven and rough morphology on the substrate surface, the water contact angle was 151.3°, and the rolling angle was 3.9°, which caused the coating to exhibit excellent self-cleaning function. Meanwhile, the epoxy polymer/fluorosilane-modified graphene oxide (E-FGO) composite coating adhered to the carbon structural steel’s surface, and its corrosion resistance was detected by the Tafel curve and EIS impedance. It was found that the current density of the 10 wt% E-FGO coating (Icorr) was the lowest (1.087 × 10−10 A/cm2), which was approximately 3 orders of magnitude lower than that of the unmodified epoxy coating. This was primarily due to the introduction of FGO, which formed a continuous physical barrier in the composite coating and gave the composite coating excellent hydrophobicity. This method might provide new ideas for advances in steel corrosion resistance in the marine sector.

Funder

the Key Research and Development Program of Shaanxi Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3