Poly(methyl methacrylate) as Healing Agent for Carbon Fibre Reinforced Epoxy Composites

Author:

Peñas-Caballero Mónica1,Chemello Enrico2ORCID,Grande Antonio Mattia2ORCID,Hernández Santana Marianella1ORCID,Verdejo Raquel1ORCID,Lopez-Manchado Miguel A.1ORCID

Affiliation:

1. Institute of Polymer Science and Technology (ICTP), CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain

2. Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy

Abstract

Self-healing materials offer a potential solution to the problem of damage to fibre-reinforced plastics (FRPs) by allowing for the in-service repair of composite materials at a lower cost, in less time, and with improved mechanical properties compared to traditional repair methods. This study investigates for the first time the use of poly(methyl methacrylate) (PMMA) as a self-healing agent in FRPs and evaluates its effectiveness both when blended with the matrix and when applied as a coating to carbon fibres. The self-healing properties of the material are evaluated using double cantilever beam (DCB) tests for up to three healing cycles. The blending strategy does not impart a healing capacity to the FRP due to its discrete and confined morphology; meanwhile, coating the fibres with the PMMA results in healing efficiencies of up to 53% in terms of fracture toughness recovery. This efficiency remains constant, with a slight decrease over three subsequent healing cycles. It has been demonstrated that spray coating is a simple and scalable method of incorporating a thermoplastic agent into an FRP. This study also compares the healing efficiency of specimens with and without a transesterification catalyst and finds that the catalyst does not increase the healing efficiency, but it does improve the interlaminar properties of the material.

Funder

State Research Agency of Spain

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3