Evaluation of the Deterioration of Untreated Commercial Polystyrene by Psychrotrophic Antarctic Bacterium

Author:

Tang Pui Mun1,Habib Syahir1,Shukor Mohd Yunus Abd1ORCID,Alias Siti Aisyah23ORCID,Smykla Jerzy4ORCID,Yasid Nur Adeela1ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia

2. Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia

3. National Antarctic Research Centre, B303 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia

4. Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland

Abstract

Polystyrene (PS) and microplastic production pose persistent threats to the ecosystem. Even the pristine Antarctic, which is widely believed to be pollution-free, was also affected by the presence of microplastics. Therefore, it is important to comprehend the extent to which biological agents such as bacteria utilise PS microplastics as a carbon source. In this study, four soil bacteria from Greenwich Island, Antarctica, were isolated. A preliminary screening of the isolates for PS microplastics utilisation in the Bushnell Haas broth was conducted with the shake-flask method. The isolate AYDL1 identified as Brevundimonas sp. was found to be the most efficient in utilising PS microplastics. An assay on PS microplastics utilisation showed that the strain AYDL1 tolerated PS microplastics well under prolonged exposure with a weight loss percentage of 19.3% after the first interval (10 days of incubation). Infrared spectroscopy showed that the bacteria altered the chemical structure of PS while a deformation of the surface morphology of PS microplastics was observed via scanning electron microscopy after being incubated for 40 days. The obtained results may essentially indicate the utilisation of liable polymer additives or “leachates” and thus, validate the mechanistic approach for a typical initiation process of PS microplastics biodeterioration by the bacteria (AYDL1)—the biotic process.

Funder

Yayasan Penyelidikan Antartika Sultan Mizan (YPASM) Research

Smart Partnership Initiative 2020 and Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3