Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage

Author:

Cordeiro Rachel12,Alvites Rui D.234ORCID,Sousa Ana C.234ORCID,Lopes Bruna234ORCID,Sousa Patrícia234ORCID,Maurício Ana C.234ORCID,Alves Nuno15ORCID,Moura Carla156ORCID

Affiliation:

1. Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal

2. Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal

3. Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal

4. Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal

5. Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal

6. Applied Research Institute (i2A), Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal

Abstract

Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair.

Funder

“Fundação para a Ciência e a Tecnologia” FCT/MCTES

the institutional scientific employment program-contract

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3