In Situ Nanofibrillar Polypropylene-Based Composite Microcellular Foams with Enhanced Mechanical and Flame-Retardant Performances

Author:

Jiang Yufan12,Jiang Jing3ORCID,Yang Lian3,Zhang Yihe3,Wang Xiaofeng2,Zhao Na2,Hou Jianhua2,Li Qian12

Affiliation:

1. School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China

2. School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China

3. School of Mechanical & Power Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

With the increasing demand for plastic components, the development of lightweight, high strength and functionalized polypropylene (PP) from a cost-effective and environmentally friendly process is critical for resource conservation. In situ fibrillation (INF) and supercritical CO2 (scCO2) foaming technology were combined in this work to fabricate PP foams. Polyethylene terephthalate (PET) and poly(diaryloxyphosphazene)(PDPP) particles were applied to fabricate in situ fibrillated PP/PET/PDPP composite foams with enhanced mechanical properties and favorable flame-retardant performance. The existence of PET nanofibrils with a diameter of 270 nm were uniformly dispersed in PP matrix and served multiple roles by tuning melt viscoelasticity for improving microcellular foaming behavior, enhancing crystallization of PP matrix and contributing to improving the uniformity of PDPP’s dispersion in INF composite. Compared to pure PP foam, PP/PET(F)/PDPP foam exhibited refined cellular structures, thus the cell size of PP/PET(F)/PDPP foam was decreased from 69 to 23 μm, and the cell density increased from 5.4 × 106 to 1.8 × 108 cells/cm3. Furthermore, PP/PET(F)/PDPP foam showed remarkable mechanical properties, including a 975% increase in compressive stress, which was attributed to the physical entangled PET nanofibrils and refined cellular structure. Moreover, the presence of PET nanofibrils also improved the intrinsic flame-retardant nature of PDPP. The synergistical effect of the PET nanofibrillar network and low loading of PDPP additives inhibited the combustion process. These gathered advantages of PP/PET(F)/PDPP foam make it promising for lightweight, strong, and fire-retardant polymeric foams.

Funder

NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization

Key R&D projects in Henan province

Anhui Province Key Laboratory of Environment-friendly Polymer Materials

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3