Synthesis, Properties, and Biodegradability of Novel Sequence-Controlled Copolyesters Composed of Glycolic Acid, Dicarboxylic Acids, and C3 or C4 Diols

Author:

Nakayama Yuushou1ORCID,Fukumoto Keitaro1,Kusu Yuji1,Tanaka Ryo1ORCID,Shiono Takeshi1ORCID,Kawasaki Norioki2,Yamano Naoko2,Nakayama Atsuyoshi2

Affiliation:

1. Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan

2. Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Osaka, Japan

Abstract

We have previously reported that sequence-controlled copolyesters such as poly((ethylene diglycolate) terephthalate) (poly(GEGT)) showed higher melting temperatures than those of the corresponding random copolymers and high biodegradability in seawater. In this study, to elucidate the effect of the diol component on their properties, a series of new sequence-controlled copolyesters composed of glycolic acid, 1,4-butanediol or 1,3-propanediol, and dicarboxylic acid units was studied. 1,4-Butylene diglycolate (GBG) and 1,3-trimethylene diglycolate (GPG) were prepared by the reactions of 1,4-dibromobutane or 1,3-dibromopropane with potassium glycolate, respectively. Polycondensation of GBG or GPG with various dicarboxylic acid chlorides produced a series of copolyesters. Terephthalic acid, 2,5-furandicarboxylic acid, and adipic acid were used as the dicarboxylic acid units. Among the copolyesters bearing terephthalate or 2,5-furandicarboxylate units, the melting temperatures (Tm) of the copolyesters containing 1,4-butanediol or 1,2-ethanediol units were substantially higher than those of the copolyester containing the 1,3-propanediol unit. Poly((1,4-butylene diglycolate) 2,5-furandicarboxylate) (poly(GBGF)) showed a Tm at 90 °C, while the corresponding random copolymer was reported to be amorphous. The glass-transition temperatures of the copolyesters decreased as the carbon number of the diol component increased. Poly(GBGF) was found to show higher biodegradability in seawater than that of poly(butylene 2,5-furandicarboxylate) (PBF). On the other hand, the hydrolysis of poly(GBGF) was suppressed in comparison with that of poly(glycolic acid). Thus, these sequence-controlled copolyesters have both improved biodegradability compared to PBF and lower hydrolyzability than PGA.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference41 articles.

1. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review;Samsudin;Adv. Drug Deliv. Rev.,2016

2. A Literature Review of Poly(Lactic Acid);Garlotta;J. Polym. Environ.,2001

3. The development and challenges of poly(lactic acid) and poly(glycolic acid);Jem;Adv. Ind. Eng. Polym. Res.,2020

4. Poly(glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications;Samantaray;Green Chem,2020

5. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters;Shah;Appl. Microbiol. Biotechnol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3