Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor

Author:

Wang Junpu1,Wang Zhu1,Zuo Yanjiang1,Wang Wenzhi2

Affiliation:

1. College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

2. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

In this paper, a multiscale analysis method was proposed to simulate carbon nanoparticles (CNPs)−filled polymers which can be strain sensors applied in wearable electronic devices, flexible skin, and health monitoring fields. On the basis of the microstructure characteristics of the composite, a microscale representative volume element model of the CNPs−filled polymer was established using the improved nearest−neighbor algorithm. By finite element analysis, the variation of the junction widths of adjacent aggregates can be extracted from the simulation results. Then, according to the conductive mechanism of CNP−filled polymers, the composite was simplified as a circuit network composed of vast random resistors which were determined by the junction widths between adjacent aggregates. Hence, by taking junction widths as the link, the resistance variation of the CNPs−filled polymer with the strain can be obtained. To verify the proposed method, the electromechanical responses of silicone elastomer filled with different CNPs under different filling amounts were investigated numerically and experimentally, respectively, and the results were in good agreement. Therefore, the multiscale analysis method can not only reveal the strain−sensing mechanism of the composite from the microscale, but also effectively predict the electromechanical behavior of the CNPs−filled polymer with different material parameters.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3