A Micro-In-Macro Gastroretentive System for the Delivery of Narrow-Absorption Window Drugs

Author:

Govender Mershen1ORCID,Rants’o Thankhoe A.1ORCID,Choonara Yahya E.1ORCID

Affiliation:

1. Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa

Abstract

A micro-in-macro gastroretentive and gastrofloatable drug delivery system (MGDDS), loaded with the model-drug ciprofloxacin, was developed in this study to address the limitations commonly experienced in narrow-absorption window (NAW) drug delivery. The MGDDS, which consists of microparticles loaded in a gastrofloatable macroparticle (gastrosphere) was designed to modify the release of ciprofloxacin, allowing for an increased drug absorption via the gastrointestinal tract. The prepared inner microparticles (1–4 µm) were formed by crosslinking chitosan (CHT) and Eudragit® RL 30D (EUD), with the outer gastrospheres prepared from alginate (ALG), pectin (PEC), poly(acrylic acid) (PAA) and poly(lactic-co-glycolic) acid (PLGA). An experimental design was utilized to optimize the prepared microparticles prior to Fourier Transition Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and in vitro drug release studies. Additionally, the in vivo analysis of the MGDDS, employing a Large White Pig model and molecular modeling of the ciprofloxacin-polymer interactions, were performed. The FTIR results determined that the crosslinking of the respective polymers in the microparticle and gastrosphere was achieved, with the SEM analysis detailing the size of the microparticles formed and the porous nature of the MGDDS, which is essential for drug release. The in vivo drug release analysis results further displayed a more controlled ciprofloxacin release profile over 24 h and a greater bioavailability for the MGDDS when compared to the marketed immediate-release ciprofloxacin product. Overall, the developed system successfully delivered ciprofloxacin in a control-release manner and enhanced its absorption, thereby displaying the potential of the system to be used in the delivery of other NAW drugs.

Funder

National Research Foundation (NRF) of South Africa

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3