Life Cycle Assessment of Functionalized Bionanocompounds with Ice Nucleation Protein for Freezing Applications

Author:

Fuentes Olga P.1,Osma Johann F.12ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia

2. Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia

Abstract

The objective of this study was to assess the effectiveness of functionalized bionanocompounds with ice nucleation protein (INP) as a novel approach for freezing applications in terms of how much energy is used during each step of freezing when water bionanocompound solutions were compared with pure water. According to the results of the manufacturing analysis, water required 28 times less energy than the silica + INA bionanocompound and 14 times less than the magnetite + INA bionanocompound. These findings showed that water used the least energy during the manufacturing process. In order to determine the associated environmental implications, an analysis of the operating stage was also conducted, taking the defrosting time of each bionanocompound during a 4 h work cycle into account. Our results showed that bionanocompounds may substantially reduce the environmental effects by achieving a 91% reduction in the impact after their use during all four work cycles in the operation stage. Additionally, given the energy and raw materials needed in this process, this improvement was more significant than at the manufacturing stage. The results from both stages indicated that, when compared with water, the magnetite + INA bionanocompound and the silica + INA bionanocompound would save an estimated 7% and 47% of total energy, respectively. The study’s findings also demonstrated the great potential for using bionanocompounds in freezing applications to reduce the effects on the environment and human health.

Funder

Ministerio de Ciencia, Tecnología e Innovación

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3