Insight into the Molecular Weight of Hydrophobic Starch Laurate-Based Adhesives for Paper

Author:

Watcharakitti Jidapa12,Nimnuan Jaturavit12,Krusong Kuakarun3ORCID,Nanan Suwat4ORCID,Smith Siwaporn Meejoo12ORCID

Affiliation:

1. Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, 999, Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand

2. Department of Chemistry, Faculty of Science, Mahidol University, 999, Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand

3. Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Rd., Patumwam, Bangkok 10330, Thailand

4. Department of Chemistry, Faculty of Science, Khon Kaen University, 123 Mittraphap Road, Muang, Khon Kaen 40002, Thailand

Abstract

Instead of using finite petroleum-based resources and harmful additives, starch can be used as a biodegradable, low-cost, and non-toxic ingredient for green adhesives. This work employs K3PO4 catalyzed transesterifications of cassava starch and methyl laurate at varying reaction times (1–10 h), resulting in the enhanced hydrophobicity of starch laurates. At longer reaction times, starch laurates having higher degrees of substitution (DS) were obtained. While starch laurates are the major products of transesterification, relatively low-molecular-weight byproducts (1%) were detected and could be hydrolyzed starches based on gel permeation chromatography results. Contact angle measurements confirmed the relatively high hydrophobicity of the modified starches compared with that of native starch. The modified starches were then employed to prepare water-based adhesives on paper (without any additional additives). Notably, the shear strength of the esterified starch adhesives appears to be independent of the DS of esterified samples, hence the transesterification reaction times. Additionally, the shear strength of water-based adhesives (0.67–0.73 MPa) for bonding to paper substrates is superior to that of two other commercially available glues by a factor of 10 to 80 percent.

Funder

National Science and Technology Development Agency

Mahidol University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3